**Example Candidate Responses** 

Cambridge International AS & A Level

# Cambridge International AS & A Level Computer Science

9608

Paper 1



**Cambridge Advanced** 

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a Centre.

© Cambridge International Examinations 2016 Version 1

# Contents

| Introduction                  | 4 |
|-------------------------------|---|
| Assessment at a glance        | 5 |
| Paper 1 – Theory Fundamentals | 6 |

# Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS & A Level Computer Science (9608), and to show how different levels of candidates' performance relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For ease of reference the following format for each component has been adopted:



Each question is followed by an extract of the mark scheme used by examiners. This, in turn, is followed by examples of marked candidate responses, each with an examiner comment on performance. Comments are given to indicate where and why marks were awarded, and how additional marks could have been obtained. In this way, it is possible to understand what candidates have done to gain their marks and what they still have to do to improve their marks.

This document illustrates the standard of candidate work for those parts of the assessment which help teachers assess what is required to achieve marks beyond what should be clear from the mark scheme. Some question types where the answer is clear from the mark scheme, such as short answers and multiple choice, have therefore been omitted.

Past papers, Examiner Reports and other teacher support materials are available on Teacher Support at <u>https://teachers.cie.org.uk</u>

# Assessment at a glance

For Cambridge International AS and A Level Computer Science, candidates may choose:

- to take Papers 1, 2, 3 and 4 in the same examination series, leading to the full Cambridge International A Level
- to follow a staged assessment route by taking Papers 1 and 2 (for the AS Level qualification) in one series, then Papers 3 and 4 (for the full Cambridge International A Level) in a later series
- to take Papers 1 and 2 only (for the AS Level qualification).

| Components                                                                |         | Weight | ting (%) |
|---------------------------------------------------------------------------|---------|--------|----------|
| All candidates take                                                       |         | AS     | A        |
| Paper 1 Theory Fundamentals                                               |         | 50     | 25       |
| This written paper contains short-answer and structured questions.        |         |        |          |
| There is no choice of questions.                                          |         |        |          |
| 75 marks                                                                  |         |        |          |
| Externally assessed 1 hour 30                                             | minutes |        |          |
| Paper 2 Fundamental Problem-solving and Programming Skills                |         | 50     | 25       |
| This written paper contains short-answer and structured questions.        |         |        |          |
| There is no choice of questions.                                          |         |        |          |
| Topics will include those given in the pre-release material. <sup>1</sup> |         |        |          |
| 75 marks                                                                  |         |        |          |
| Externally assessed                                                       | 2 hours |        |          |
| Paper 3 Advanced Theory                                                   |         | 1      | 25       |
| This written paper contains short-answer and structured questions.        |         |        |          |
| There is no choice of questions.                                          |         |        |          |
| 75 marks                                                                  |         |        |          |
| Externally assessed 1 hour 30                                             | minutes |        |          |
| Paper 4 Further Problem-solving and Programming Skills                    |         | -      | 25       |
| This written paper contains short-answer and structured questions.        |         |        |          |
| There is no choice of questions.                                          |         |        |          |
| Topics will include those given in the pre-release material. <sup>1</sup> |         |        |          |
| 75 marks                                                                  |         |        |          |
| Externally assessed                                                       | 2 hours |        |          |

Advanced Subsidiary (AS) forms 50% of the assessment weighting of the full Advanced (A) Level.

Teachers are reminded that the latest syllabus is available on our public website at **www.cie.org.uk** and Teacher Support at **https://teachers.cie.org.uk** 

# Paper 1 – Theory Fundamentals

# **Question 1**

1 (i) Convert the following binary number into hexadecimal.

# 10111000

- .....[1]
- (ii) Convert the following denary number into BCD format.

## 97

- .....[1]
- (iii) Using two's complement, show how the following denary numbers could be stored in an 8-bit register:



### Mark scheme

1 (i) B8 [1] (ii) 1001 0111 [1] (iii) 114 1 1 1 0 0 1 0 0 -93 1 0 1 0 0 0 1 1

[2]

6

### Example candidate response - high

1 (i) Convert the following binary number into hexadecimal.



### Examiner comment - high

In part (i) the candidate has correctly converted the given binary number to hexadecimal format. The answer would have been more complete if the subscript 16 was added to indicate the base, i.e. B8<sub>16</sub>.

In part (ii) the candidate has correctly converted the denary number into Binary Coded Decimal (BCD) format and has neatly written the answer as two groups of four binary digits.

In part (iii) the candidate has correctly converted both the positive and negative denary numbers into two's complement binary format.

Marks awarded for part (i) = 1/1Marks awarded for part (ii) = 1/1Marks awarded for part (iii) = 2/2

Total marks awarded = 4 out of 4

#### Paper 1

### Example candidate response - middle



### Examiner comment - middle

In part (i) the candidate has converted the binary number into denary, instead of hexadecimal. To be awarded the mark this denary value needs to be converted to hexadecimal.

In part (ii) the candidate has correctly converted the denary number into Binary Coded Decimal (BCD) format and has neatly written the answer as two groups of four binary digits.

In part (iii) the candidate has correctly converted both the positive and negative denary numbers into two's complement binary format.

| Total marks awarded          | = | 3 out of 4 |
|------------------------------|---|------------|
| Marks awarded for part (iii) | = | 2/2        |
| Marks awarded for part (ii)  | = | 1/1        |
| Marks awarded for part (i)   | = | 0/1        |

### Example candidate response - low

1 (i) Convert the following binary number into hexadecimal.



### Examiner comment – low

In part (i) the candidate has correctly converted the given binary number to hexadecimal format. The answer would have been more complete if the subscript 16 been added to indicate the base, i.e. B8<sub>16</sub>.

In part (ii) the candidate has confused Binary Coded Decimal (BCD) format with pure binary and has converted the denary number into an eight bit binary number instead of converting each individual denary digit into a four bit binary integer.

In part (iii) the candidate has correctly identified the weightings for each of the bits in the registers given on the examination paper and the conversion of the positive denary number has been completed correctly. When converting the negative value the candidate has correctly calculated that the difference between 128 and 93 is 35 and has converted that value to binary but has omitted to include the 1 in the leftmost bit to show that -93 = -128 + 35. This was a common error in this part of the question.

Marks awarded for part (i) = 1/1Marks awarded for part (ii) = 0/1Marks awarded for part (iii) = 1/2Total marks awarded = 2 out of 4 [2]

# **Question 2**

- 2 (a) Sound can be represented in a computer in a digital format.
- Give the definition of the term sampling. (i) \_\_\_\_\_ ..... .....[1] (ii) Give one reason why 16-bit sampling is used in an audio compact disc (CD). ..... .....[1] Explain what is meant by the term sampling resolution. (iii) ..... .....[2] Give one benefit and one drawback of using a higher sampling resolution. (iv) Benefit ..... ..... Drawback ..... .....[2] (b) Describe two typical features found in software for editing sound files. 1..... 2 .....

.....[2]

# Question 2, continued

(c) Explain the difference between lossless and lossy data compression techniques.

### Mark scheme

2 (a) (i) Any one from:

- · amplitude of sound wave taken at different points in time
- measurement of value of analogue signal at regular time intervals/a point in time [1]
- (ii) Any one from:
  - bit depth/sampling resolution sufficient for good quality sound
  - higher bit depth/sampling resolution would mean bigger files
  - ...hence less (music) content on each CD
  - can represent dynamic range of about 90 dB
  - 90 dB is basically the maximum dynamic range of human hearing
  - compromise between quality and reasonable file size

#### (iii) Any two from:

- resolution is the number of distinct values available to encode/represent each sample
- specified by the number of bits used to store/record each sample
- sometimes referred to as bit depth
- the higher the sampling resolution, the smaller the quantization error
- · a higher sampling resolution results in less distortion of the sound
- usually 8 bit, 16 bit, 24 bit or 32 bit
- (iv) 1 mark for benefit and 1 mark for drawback.

#### benefit

- allows for larger dynamic ranges
- ...as dynamic range is approximately six times the bit depth
- more accurate representation/crisper sound quality

#### drawback

- bigger files/occupies more memory/storage
- longer to transmit data/download music
- greater processing power needed

[2]

11

[1]

[2]

### Mark scheme, continued

(b) Any two from:

- · edit start time, stop time and duration of any sound/timeline
- extract/delete/save part of a clip
- frequency, amplitude, pitch alteration
- fade in/out of a clip
- mix/merge multiple sound sources/tracks
- · combine different sources at various volume levels
- pan between tracks/channels
- use of filters
- playback to speakers, processors or recording medium
- · conversion between different audio file formats
- etc...

[2]

#### (c) Any three from:

For full marks both techniques must be mentioned.

- lossless designed to lose none of the original detail/lossless allows original file to be recreated exactly
- lossless technique based on some form of replacement
- mention of type of replacement, for example RLE, FLAC etc.
- by example: e.g. 000-1111-222222-333 = 3-0, 4-1, 6-2, 3-3 etc.
- maximum compression about 50%
- lossy may result in loss of detail compared to original file/lossy does not allow original file to be re-created exactly
- lossy techniques make decision about what parts of sound/sound file are important and discards other information
- only keeps sounds human ear can process/discards sounds most people cannot hear
- ... then applies lossless technique, for further reduction
- lossy compression can reduce to about 10%
- an example of jpeg, mp3 or other correct examples of compressed formats.

No double credit to opposite answers, e.g. lossless maintains detail, but lossy loses detail just one mark.

[3]

### Example candidate response - high

- 2 (a) Sound can be represented in a computer in a digital format.
  - (i) Give the definition of the term sampling.
  - It refers to regularly inputting the value of a (ii) Give one reason why 16-bit sampling is used in an audio compact disc (CD).

S. samples are taken pex record ( sampling rate is 8) and due to Nyquist Theorem, the sompting resolution must [1] be twice this value, so 16 - bit. (III) Explain what is meant by the term sampling resolution.

Sampling resolution is the number of lits angred to each sample of the sought which is taken A higher sampling resolution will lead to the sound the resulting round baring a better quality [2]

- (iv) Give one benefit and one drawback of using a higher sampling resolution. Benefit Sound will have a higher quality and he more similar to the original sound Drawback \_\_\_\_\_t mill increase the file size of the sound, so it will take up more storage grace. [2]
- (b) Describe two typical features found in software for editing sound files.

1. The option to change the frequency (pitch) of the sound 2. The option to crop parts of the sound which has been input ( nemore parts of the sound ). [2]

### Example candidate response - high, continued

(c) Explain the difference between lossless and lossy data compression techniques.

Lossless techniques result in no data being lost. (file doesn't lose occursacy, can be decomposed back to a copy of original), referens lossy techniques result in data. being lost (can't be decomposed back to original) However, lossy techniques result in greater compression and reduction of file size than lossless techniques (only up to about half [3] the overginal file size). Lossless techniques include and run - length - encoding (repeating patterns in data), sheres lossy techniques includes perceptual coding (removes less rignificant data).

### Examiner comment - high

It should be noted here that part (a)(i)–(iv) are all one sub-question and the rubric at the beginning of part (a) refers to sound. Candidates who refer to, for example, images, in their answers or candidates who give image examples in their answers will therefore not be awarded any marks.

In part (a)(i) the candidate has correctly explained that sampling is the capturing of the value of the sound wave at regular intervals and has been awarded the mark. The definition given could be improved if *inputting* had been replaced with a different word, for example, measuring, but it is clear what the candidate means. The expansion statement is also correct, although not required as there is just one mark for this part question.

In part (a)(ii) there needs to be an awareness that an audio CD has a fixed amount of storage space, and so in order to accommodate a reasonable number of tracks on the CD there needs to be a compromise between the accuracy of the digital representation of the audio so that the resulting sound is acceptable to listeners and the size of the files created. 16-bit sampling best satisfies both of these conditions.

In part (a)(iii) the candidate has correctly stated that sampling resolution is the number of bits assigned to each sample and has been awarded one mark. However, the statement that a higher sampling resolution leads to better sound quality is not precise enough to be awarded the second mark. It is the accuracy (or precision) of the sampled sound that is improved. If the original (analogue) audio is of poor quality it does not matter what sampling resolution is used the result will still be a poor quality sound.

In part (a)(iv) the candidate has given two very good answers, explaining that the sampled sound will be more similar to the original and that the higher sampling resolution will result in a greater file size hence requiring more storage space. Both marks have been awarded.

In part (b) the candidate was awarded both marks for correctly identifying features found in software for editing sound files.

In part (c) the candidate has given an excellent answer. The statement that lossless compression means that the file can be decompressed to an exact copy of the original is awarded a mark; the next statement about lossy compression is the reverse argument and so is not awarded a second mark. The candidate has then explained about the difference in compression ratios which is awarded the second mark and has named two compression techniques, any one of which would be awarded the third mark.

Marks awarded for part (a) = (i) 1/1, (ii) 0/1, (iii) 1/2, (iv) 2/2Marks awarded for part (b) = 2/2Marks awarded for part (c) = 3/3

Total marks awarded = 9 out of 11

### Example candidate response - middle

2 (a) Sound can be represented in a computer in a digital format.

(i) Give the definition of the term sampling. vecord analogue duta the the of samples. AC SOUND .....[1] Give one reason why 16-bit sampling is used in an audio compact disc (CD). (ii) lo stone sony is mough sampling. ..... .....[1] Explain what is meant by the term sampling resolution. (iii) hut whe we colo CUMNER CHANTOLIM ..... the New 7 MPUTUVEN that are used in each P CLAADCLAL the precision of the sound [2] Cle ley Miller. (iv) Give one benefit and one drawback of using a higher sampling resolution. of the sound is heally yood Neule. ..... lik sizc Drawback . (b) Describe two typical features found in software for editing sound files. Oque couverter 1 ..... 2 A D .....[2] 

### Example candidate response - middle, continued

(c) Explain the difference between lossless and lossy data compression techniques. OW AVELSION 15 (am Eves low UM L ....[3] (OWHYESSION

### Examiner comment – middle

The responses to parts (a)(i) and (a)(ii) are not precise enough to be awarded any marks. In part (a)(i) the candidate needs to define what is meant by a sample, and in (a)(ii) there needs to be an explanation of why 16-bit sampling is enough to store songs.

In part (a)(iii) the candidate has correctly explained what sampling resolution is and is awarded one mark. There is also an expansion statement that refers to the precision of the sound, which is good enough to be awarded the second mark.

The responses to part (a)(iv) are just good enough to be awarded both marks. The candidate has qualified the first statement by saying that the quality is precise, which has been accepted as equivalent to accurate and *a lot of file size*, though worded poorly, is enough to show that there is understanding that the file size is increased.

In part (b) the response is not precise enough to gain any marks. The second feature is just the opposite of the first and so is not worthy of a second mark. Sound editing software might very well include a feature to convert analogue sound to digital, but this answer is not in any context and needs expansion. It is too generalised a statement to be awarded a mark.

In part (c) the response is awarded all three marks. The candidate has also stated that lossless compression allows decompression to the original, which is awarded one mark. There is a correct example of a compressed file type, which has been awarded the second mark and a method of compression has been identified for the third mark.

Marks awarded for part (a) = (i) 0/1, (ii) 0/1, (iii) 2/2, (iv) 2/2Marks awarded for part (b) = 0/2Marks awarded for part (c) = 3/3Total marks awarded = 7 out of 11

# Example candidate response - low

| din ar | ar ente di |       |                                                                            |
|--------|------------|-------|----------------------------------------------------------------------------|
| 2      | (a)        | Sol   | ind can be represented in a computer in a digital format.                  |
|        |            | ·(i). | Give the definition of the term sampling.                                  |
|        |            |       | The section of sound/wave                                                  |
|        |            |       | that you're focusing on                                                    |
|        |            |       |                                                                            |
|        |            |       | [1]                                                                        |
|        |            | (ii)  | Give one reason why 16-bit sampling is used in an audio compact disc (CD). |
|        |            |       | It's the most efficient way                                                |
|        |            |       | [1]                                                                        |
|        |            | (iii) | Explain what is meant by the term sampling resolution.                     |
|        |            |       | The quality of the sound The                                               |
|        |            |       | higher the resolution, the better                                          |
|        |            |       | the quality.                                                               |
|        |            |       | 7 J                                                                        |
|        |            |       |                                                                            |
|        |            | (iv)  | Give one benefit and one drawback of using a higher sampling resolution.   |
|        |            |       | Benefit Better quality.                                                    |
|        |            | 3     |                                                                            |
|        |            |       | Drawback # File size increases                                             |
|        |            |       | [2]                                                                        |
|        |            |       |                                                                            |
|        |            |       |                                                                            |

(b) Describe two typical features found in software for editing sound files.

1 Adding nore sound files Increase/ decrease pitch/ of the sound file 2 Deleting one or more or parts of a Sound file [2]

#### Paper 1

### Example candidate response - low, continued

(c) Explain the difference between lossless and lossy data compression techniques.

oniores R ..... 

### Examiner comment - low

The responses to parts (a)(i) and (a)(ii) are not precise enough to be awarded any marks. In part (a)(i) the definition refers to a *section* of the sound and the diagram is actually incorrect as it also suggests that it is a whole section of the sound wave that is being examined rather than a single point on the curve. In (a)(ii) there needs to be an explanation of why 16-bit sampling is used, the candidate's response is far too general to be awarded a mark at this level.

In part (a)(iii) the candidate should have first explained what was meant by sampling resolution and then explained the effect of changing the resolution. This explanation alone is not precise enough to be awarded a mark. Similarly, in part (a)(iv) 'better quality' is too imprecise for the mark, it needs reference to accuracy of representation, whilst the answer given for the drawback is just good enough to be awarded a mark.

In part (b) the candidate has described two correct features of sound editing software and is awarded both marks.

In part (c) the candidate has stated that lossless compression allows decompression to the original, which is awarded one mark. The second statement referring to lost data reducing the file size is also awarded a mark, but there needs to be an additional correct statement for the award of a third mark.

Marks awarded for part (a) = (i) 0/1, (ii) 0/1, (iii) 0/2, (iv) 1/2Marks awarded for part (b) = 2/2Marks awarded for part (c) = 2/3

Total marks awarded = 5 out of 11

# **Question 3**

3 Five modes of addressing and five descriptions are shown below.

Draw a line to connect each mode of addressing to its correct description.



### Mark scheme



21

## Example candidate response - high



### Examiner comment - high

The candidate has correctly connected each mode of addressing with the corresponding description. There are no incorrect connections, so four marks are awarded.

Total marks awarded = 4 out of 4

# Example candidate response - middle



### Examiner comment - middle

This candidate has confused direct addressing and immediate addressing and has thus made two incorrect connections, so is awarded two of the four marks.

Total marks awarded = 2 out of 4

# Example candidate response - low



### Examiner comment - low

This candidate has correctly identified the descriptions of indexed and relative addressing; however, the descriptions of direct addressing, immediate addressing and indirect addressing have been confused and there are thus three incorrect connections, so the candidate is awarded one mark.

Total marks awarded = 1 out of 4

# Question 4

| 4 | (a) | Ser         | isors are one type of input device.                                                                                                                     |
|---|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     | For         | each of the following situations, name a different sensor that could be used.                                                                           |
|   |     | (i)         | air conditioning in an office building                                                                                                                  |
|   |     |             | [1]                                                                                                                                                     |
|   |     | (ii)        | maintaining correct growing conditions in a greenhouse                                                                                                  |
|   |     |             | [1]                                                                                                                                                     |
|   |     | (iii)       | detecting an intruder in a building                                                                                                                     |
|   |     |             | [1]                                                                                                                                                     |
|   | (b) | Ser<br>tran | sors are used to monitor seismic activity. At the end of each day, all the data are smitted to a central computer. This is hundreds of kilometres away. |
|   |     | Des<br>stag | cribe <b>one</b> way of ensuring that the integrity of the data is retained during the transmission<br>ge.                                              |
|   |     |             |                                                                                                                                                         |
|   |     |             |                                                                                                                                                         |
|   |     |             |                                                                                                                                                         |
|   |     |             |                                                                                                                                                         |
|   |     |             |                                                                                                                                                         |
|   |     |             |                                                                                                                                                         |
|   |     |             | [4]                                                                                                                                                     |

25

### Mark scheme

| 4 | (a) | answer requires a different | sensor for each part, | 1 mark for each part |  |
|---|-----|-----------------------------|-----------------------|----------------------|--|
|---|-----|-----------------------------|-----------------------|----------------------|--|

| (i)   | temperature/thermistor                                | [1] |
|-------|-------------------------------------------------------|-----|
| (ii)  | moisture, humidity, light/photodiode, temperature, pH | [1] |
| (iii) | sound/acoustic, infrared, pressure, motion, microwave | [1] |

(b) 1 mark for name + 3 marks for description

#### parity check

- uses even or odd parity which is decided before data sent
- each byte has a parity bit
- parity bit is set to 0 or 1 to make parity for byte correct
- after transmission, parity of each byte re-checked
- if it is different, then an error is flagged
- any reference to use of parity blocks/parity byte to (identify position of incorrect bit)

#### checksum

- a calculation is carried out on the data to be sent (checksum)
- the result is sent, along with data to recipient
- checksum is re-calculated at receiving end
- if both sums are the same, no error has occurred
- if the sums are different, the data has been corrupted during transmission
- request is sent to re-send data

[4]

### Example candidate response – high

4 (a) Sensors are one type of input device.

For each of the following situations, name a different sensor that could be used.

| (i)  | air conditioning in an office building                 |     |
|------|--------------------------------------------------------|-----|
|      | Temperature sensor                                     | [1] |
| (ii) | maintaining correct growing conditions in a greenhouse |     |

- Sensor [1] 120102
- (iii) detecting an intruder in a building

(b) Sensors are used to monitor seismic activity. At the end of each day, all the data are transmitted to a central computer. This is hundreds of kilometres away.

Describe one way of ensuring that the integrity of the data is retained during the transmission stage.

avin cher coul huo devices sensor ad computer) . to 1 agree on parily or even odd Ω - Checking digit. 4 air for the bransm ission ~ A1 MAG The vico receiving device will check the ..... it doesn't [4] number of 1s or Us and i the sending device, on error with match will be produced. \* (I for an even parity, O for a odd parity)

## Examiner comment - high

In part (a) the candidate has correctly identified three different sensors that could be used in the given situations.

In part (b) a method of ensuring data integrity has been named, a parity check, and so a mark is awarded for the identification of the method. The candidate has stated that there will need to be agreement on the type of parity used, so a second mark is awarded. The description of odd or even parity, however, is not detailed enough to be awarded any marks because the additional statement is incorrect and *checking digit* is not sufficiently precise for a description of the parity bit. There is also insufficient precision in the description of the receiving device checking the parity as the candidate does not explain whether the ones and zeros are being checked horizontally in a byte or vertically in a column. A third mark is awarded for the error being produced if parity of received data is different.

Marks awarded for part (a) = (i) 1/1, (ii) 1/1, (iii) 1/1Marks awarded for part (b) = 3/4

Total marks awarded = 6 out of 7

### Example candidate response - middle

4 (a) Sensors are one type of input device.

For each of the following situations, name a different sensor that could be used.

|     | (i)         | air conditioning in an office building                                                                                                                  |
|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |             | tempreture Seuson [1]                                                                                                                                   |
|     | (ii)        | maintaining correct growing conditions in a greenhouse                                                                                                  |
|     |             | Light Rensor [1]                                                                                                                                        |
|     | (iii)       | detecting an intruder in a building                                                                                                                     |
|     |             | bua sava nation senso- [1]                                                                                                                              |
| (b) | Sen<br>tran | sors are used to monitor seismic activity. At the end of each day, all the data are smitted to a central computer. This is hundreds of kilometres away. |
|     | Des<br>stag | cribe <b>one</b> way of ensuring that the integrity of the data is retained during the transmission<br>والمريانية                                       |
|     | f<br>f      | Ine way of theping inlagenty is using<br>switz byte. This essence that will easy tells<br>us it any corruption that happened                            |
|     |             |                                                                                                                                                         |

### Examiner comment - middle

In part (a) the candidate has correctly identified three different sensors that could be used in the given situations.

In part (b) a method of ensuring data integrity has been identified, the use of a parity byte, and so a mark is awarded. The second statement is too generalised to be awarded any marks as there is no further description of the method.

Marks awarded for part (a) = (i) 1/1, (ii) 1/1, (iii) 1/1Marks awarded for part (b) = 1/4

Total marks awarded = 4 out of 7

# Example candidate response - low

4 (a) Sensors are one type of input device.

For each of the following situations, name a different sensor that could be used.

- (i) air conditioning in an office building
  - Temperature Sensure
  - (ii) maintaining correct growing conditions in a greenhouse
- (iii) detecting an intruder in a building
  - Juser Lensor [1]
- (b) Sensors are used to monitor seismic activity. At the end of each day, all the data are transmitted to a central computer. This is hundreds of kilometres away.

Describe one way of ensuring that the integrity of the data is retained during the transmission stage.

Using dula encryption, the original test will be taked into encrypted test using a key value hence the only way to do a decryption and manipulate the data is lig having the key value, depending if the ence. Whe key value is only known between the sender and the beceiver, so take a fire oniginal data can only be sen and munipulate it between lig the sender and the beceiver [4]

### Examiner comment - low

In part (a) suitable sensors have correctly been identified for the first two situations, however *laser sensor* is not an acceptable name for a sensor to detect an intruder and so no mark is awarded for the third part question.

In part (b) the question asks for a method of ensuring data integrity during transmission. Encryption will prevent the data being understood if it is accessed by unauthorised individuals whilst being transmitted, but it is not a method of ensuring data integrity. The encrypted data could still be corrupted during transmission.

Marks awarded for part (a) = (i) 1/1, (ii) 1/1, (iii) 0/1Marks awarded for part (b) = 0/4

Total marks awarded = 2 out of 7

# **Question 5**

- 5 (a) Telephone calls can be made by using:
  - conventional telephones (using the Public Service Telephone Network (PSTN) system) over a wired network
  - · a computer, equipped with speakers and microphone, connected to the Internet

Put a tick ( $\checkmark$ ) in the correct column to match each description to the appropriate communication method.

| Description                                                                  | Conventional telephone<br>using PSTN | Internet-based system |
|------------------------------------------------------------------------------|--------------------------------------|-----------------------|
| connection only in use<br>whilst sound is being<br>transmitted               |                                      |                       |
| dedicated channel used<br>between two points for the<br>duration of the call |                                      |                       |
| connection maintained<br>throughout the telephone<br>call                    |                                      |                       |
| encoding schemes and<br>compression technology<br>used                       |                                      |                       |
| lines remain active even<br>during a power outage                            |                                      |                       |

(b) Distinguish between the Internet and the World Wide Web (WWW).

| <br>    |
|---------|
|         |
|         |
|         |
| <br>[3] |

[5]

# Question 5, continued

- (c) Name the hardware device that is being described:
  - (i) A device that transfers data from one network to another in an intelligent way. It has the task of forwarding data packets to their destination by the most efficient route.
     [1]
     (ii) A device used between two dissimilar LANs. The device is required to convert data packets from one protocol to another.
     [1]
     (iii) A device or software that provides a specific function for computers using a network. The most common examples handle printing, file storage and the delivery of web pages.

### Mark scheme

### 5 (a)

| Description                                                                  | Conventional telephone<br>using PSTN | Internet-based system |
|------------------------------------------------------------------------------|--------------------------------------|-----------------------|
| connection only in use<br>whilst sound is being<br>transmitted               |                                      | ✓                     |
| dedicated channel used<br>between two points for the<br>duration of the call | ✓                                    |                       |
| connection maintained<br>throughout the telephone<br>call                    | ✓                                    |                       |
| encoding schemes and<br>compression technology<br>used                       |                                      | ~                     |
| lines remain active even<br>during a power outage                            | ✓                                    |                       |

(b) maximum of two marks for Internet references and maximum of two marks for world wide web references

#### Internet

- · massive network of networks/interconnected network of computer devices
- Internet stands for Interconnected Networks
- uses TCP/IP protocol

#### World Wide Web (www)

- is a collection of (multimedia) web pages/documents
- ...stored on websites
- http/protocols used to transmit data
- web pages are written in HTML
- URLs specify the location of the web pages

web documents are accessed using browsers
[3]

 (c)
 (i) router
 [1]

 (ii) gateway
 [1]

 (iii) server
 [1]

### Example candidate response - high

- 5 (a) Telephone calls can be made by using:
  - conventional telephones (using the Public Service Telephone Network (PSTN) system) over a wired network
  - a computer, equipped with speakers and microphone, connected to the Internet

Put a tick ( $\checkmark$ ) in the correct column to match each description to the appropriate communication method.

| Description                                                                  | Conventional telephone<br>using PSTN | Internet-based system |  |
|------------------------------------------------------------------------------|--------------------------------------|-----------------------|--|
| connection only in use<br>whilst sound is being<br>transmitted               | abor                                 |                       |  |
| dedicated channel used<br>between two points for the<br>duration of the call |                                      |                       |  |
| connection maintained<br>throughout the telephone<br>call                    | /                                    |                       |  |
| encoding schemes and<br>compression technology<br>used                       |                                      |                       |  |
| lines remain active even<br>during a power outage                            | ~                                    |                       |  |

(b) Distinguish between the Internet and the World Wide Web (WWW).

The difference is that the Internet is a netwo network collection of interconnected computers network available all around the world, alloning people to connect communicate using their computers. On the other hand, the Wixix is just a collection of interconnected hypestext documents that is just a small part of [3] the Internet.

[5]

#### Paper 1

### Example candidate response - high, continued

- (c) Name the hardware device that is being described:
  - (i) A device that transfers data from one network to another in an intelligent way. It has the task of forwarding data packets to their destination by the most efficient route.

Router [1]

(ii) A device used between two dissimilar LANs. The device is required to convert data packets from one protocol to another.

| Gateway | ۲ <b>۲</b> | 1 |
|---------|------------|---|
|         | ſ          | 1 |

(iii) A device or software that provides a specific function for computers using a network. The most common examples handle printing, file storage and the delivery of web pages.

### Examiner comment - high

In part (a) the candidate has correctly matched four of the descriptions to the communication method and is therefore awarded four marks. An internet-based system does not maintain a dedicated channel between the two points for the duration of a call, but a conventional telephone using PSTN does.

In part (b) the first statement that the internet is a network of interconnected networks available around the world is awarded one mark as there is a definite statement of the scale of the network connection. The statement that the WWW is a collection of interconnected hypertext documents is also awarded one mark. Neither the internet nor the WWW has been further expanded sufficiently to award the third mark. Allowing people to communicate using computers is not detailed enough; communication via computers can be done without the internet and the statement that the WWW is a small part of the internet is implying that the WWW is hardware, which is incorrect.

In part (c) the candidate has correctly identified each of the hardware devices described and is therefore awarded all three marks.

Marks awarded for part (a) = 4/5Marks awarded for part (b) = 2/3Marks awarded for part (c) = (i) 1/1, (ii) 1/1, (iii) 1/1

Total marks awarded = 9 out of 11

### Example candidate response - middle

- 5 (a) Telephone calls can be made by using:
  - conventional telephones (using the Public Service Telephone Network (PSTN) system) over a wired network
  - a computer, equipped with speakers and microphone, connected to the Internet

Put a tick (✓) in the correct column to match each description to the appropriate communication method.

836F

÷

| Description                                                                  | Conventional telephone<br>using PSTN | Internet-based system |  |
|------------------------------------------------------------------------------|--------------------------------------|-----------------------|--|
| connection only in use<br>whilst sound is being.<br>transmitted              |                                      |                       |  |
| dedicated channel used<br>between two points for the<br>duration of the call | 1                                    | đ                     |  |
| connection maintained throughout the telephone call                          | · /                                  |                       |  |
| encoding schemes and<br>compression technology<br>used                       | 8                                    | <ul> <li>.</li> </ul> |  |
| lines remain active even<br>during a power outage                            | V                                    | 3*                    |  |

(b) Distinguish between the Internet and the World Wide Web (WWW).

| the comp  | uters to | interne    | t service | providers  | all around |
|-----------|----------|------------|-----------|------------|------------|
| Earth     |          |            |           |            |            |
| World W   | Irde Web | D B use    | d when    | a web      | page 13    |
| requested | through  | the in     | ternet so | arvice pro | ovidea     |
| Used for  | web par  | ae hosting |           |            | [3]        |
### Example candidate response - middle, continued

- (c) Name the hardware device that is being described:
  - (i) A device that transfers data from one network to another in an intelligent way. It has the task of forwarding data packets to their destination by the most efficient route.

ster [1] (ii) A device used between two dissimilar LANs. The device is required to convert data packets from one protocol to another.

Modem [1]

(iii) A device or software that provides a specific function for computers using a network. The most common examples handle printing, file storage and the delivery of web pages:

Hub [1].

### Examiner comment – middle

1

In part (a) the candidate has correctly matched all five descriptions to the communication method and is awarded all five marks.

In part (b) the statement that the internet is a worldwide network is awarded a mark as there is a clear statement of the scale of the network. The statements about the WWW, however, are not a description of hypertext documents or multi-media resources. The candidate needs to understand that the WWW is the collection of documents, one of which will be the webpage requested through the ISP. The final statement also refers to the WWW in terms of hardware which is incorrect; if the candidate had made it clear that the internet was used for webpage hosting it would have been a better answer.

In part (c) the candidate has identified just one of the hardware devices being described and so is awarded just one mark.

Marks awarded for part (a) = 5/5Marks awarded for part (b) = 1/3Marks awarded for part (c) = (i) 1/1, (ii) 0/1, (iii) 0/1

Total marks awarded = 7 out of 11

### Example candidate response - low

- 5 (a) Telephone calls can be made by using:
  - conventional telephones (using the Public Service Telephone Network (PSTN) system) over a wired network
  - a computer, equipped with speakers and microphone, connected to the Internet

Put a tick ( $\checkmark$ ) in the correct column to match each description to the appropriate communication method.

| Description                                                                  | Conventional telephone<br>using PSTN | Internet-based system |
|------------------------------------------------------------------------------|--------------------------------------|-----------------------|
| connection only in use<br>whilst sound is being<br>transmitted               |                                      |                       |
| dedicated channel used<br>between two points for the<br>duration of the call |                                      |                       |
| connection maintained<br>throughout the telephone<br>call                    |                                      |                       |
| encoding schemes and<br>compression technology<br>used                       |                                      |                       |
| lines remain active even<br>during a power outage                            | Asachor                              | · /.                  |
|                                                                              |                                      |                       |

(b) Distinguish between the Internet and the World Wide Web (WWW).

West 10 IS Ko ..... Víc 20 Ci ..... ...... network 0 ..... .....[3]

[5]

### Example candidate response - low, continued

(c) Name the hardware device that is being described:

- X
- (i) A device that transfers data from one network to another in an intelligent way. It has the task of forwarding data packets to their destination by the most efficient route.
- (ii) A device used between two dissimilar LANs. The device is required to convert data packets from one protocol to another.
   (iii) A device or software that provides a specific function for computers using a network. The most common examples handle printing, file storage and the delivery of web pages.

### Examiner comment - low

In part (a) the candidate has correctly matched three of the descriptions to the communication method and is therefore awarded three marks. A conventional telephone using PSTN is connected the whole time whether the callers are speaking or not, whereas an internet-based system uses the connection only when transmitting sound. A conventional telephone using PSTN remains active during a power outage, an internet-based system does not.

In part (b) the first statement that the WWW is a collection of webpages is enough to be awarded one mark. The statement that the internet is a group of interconnected networks is not a precise enough description as the candidate needs to illustrate the scale of the network. There are three marks available for this part question and the candidate needs to understand that three correct, clear and different statements are needed if three marks are to be awarded.

In part (c) the candidate has not correctly identified any of the hardware devices being described and so is not awarded any marks.

Marks awarded for part (a) = 3/5Marks awarded for part (b) = 1/3Marks awarded for part (c) = (i) 0/1, (ii) 0/1, (iii) 0/1

Total marks awarded = 4 out of 11

# **Question 6**

6 (a) Name the most suitable input or output device for each of the following uses.

Give a different device in each case.

| Description of use                                     | Input or output device |
|--------------------------------------------------------|------------------------|
| input of credit card number into an online form        |                        |
| selection of an option at an airport information kiosk |                        |
| output of a single high-quality photograph             |                        |
| output of several hundred high-quality leaflets        |                        |
| input of a hard copy image into a computer             |                        |

(b) All of the uses in part (a) involve the input or output of data.

(i) Describe two methods of preventing accidental loss of data.

|      | 1                                                                                      |
|------|----------------------------------------------------------------------------------------|
|      |                                                                                        |
|      | 2                                                                                      |
|      | [2]                                                                                    |
| (ii) | Describe <b>one</b> way of ensuring the security of the data against malicious damage. |
|      | [1]                                                                                    |

[5]

### Mark scheme

6 (a)

| Description of use                                     | Input or output device    |
|--------------------------------------------------------|---------------------------|
| input of credit card number into an online form        | Keyboard/keypad/numberpad |
| selection of an option at an airport information kiosk | touch screen              |
| output of a singe high quality photograph              | ink jet printer           |
| output of several hundred high quality leaflets        | laser printer             |
| input of a hard copy image into a computer             | scanner                   |
|                                                        | [5]                       |

- (b) (i) Any two from:
  - frequent (or equivalent) backup EITHER to secondary media/to 3rd party server/cloud/removable devices/continuous backup OR stored remotely
  - disk-mirroring strategy/RAID
  - UPS (uninterruptable power supply)/backup generator
  - (ii) Any one from:
    - protection of data (or equivalent) with passwords/using password and username for logging on include e.g. fingerprint scanning
    - encryption
    - installation and use of up to date anti-malware/anti-virus
    - give different access rights to different users
    - use a firewall,
    - physical methods/lock doors and use secure entry devices/CCTV
       [1]

[2]

### Example candidate response – high

6 (a) Name the most suitable input or output device for each of the following uses.

Give a different device in each case.

| Description of use                                     | Input or output device |  |
|--------------------------------------------------------|------------------------|--|
| input of credit card number into an online form        | Keyboard               |  |
| selection of an option at an airport information kiosk | Touchscreen            |  |
| output of a single high-quality photograph             | Inlejet printer        |  |
| output of several hundred high-quality leaflets        | Loser printer          |  |
| input of a hard copy image into a computer             | Sconner Sconner        |  |

(b) All of the uses in part (a) involve the input or output of data.



### Examiner comment - high

In part (a) the candidate has correctly identified a different device for all five uses and has distinguished correctly between different types of printer. This answer is awarded five marks.

In part (b)(i) the candidate has correctly identified and described disk-mirroring as a method of preventing accidental loss of data, and is awarded one mark for the second answer. The candidate should be aware that just describing disk backup is not sufficiently detailed to be awarded a mark. There needs to be an understanding that the backups need to be performed regularly and the backup media stored safely, preferably off-site.

In part (b)(ii) the candidate has given a good description of encryption as a method of preventing malicious damage to the data and is awarded a mark.

Marks awarded for part (a) = 5/5Marks awarded for part (b) = (i) 1/2, (ii) 1/1

Total marks awarded = 7 out of 8

### Example candidate response - middle

6 (a) Name the most suitable input or output device for each of the following uses.

Give a different device in each case.

| Description of use                                     | Input or output device |  |
|--------------------------------------------------------|------------------------|--|
| input of credit card number into an online form        | Key pad / board        |  |
| selection of an option at an airport information kiosk | Touch screen           |  |
| output of a single high-quality photograph             | laser printer          |  |
| output of several hundred high-quality leaflets        | inkjet printer         |  |
| input of a hard copy image into a computer             | Scanner                |  |

- (b) All of the uses in part (a) involve the input or output of data.
  - (i) Describe two methods of preventing accidental loss of data.
     1 Disk mirroring → so you have a control drive
     He data on an identical drive

| , Have | . bac | kup   | hard   | drives | , incas | e    |
|--------|-------|-------|--------|--------|---------|------|
|        | S 172 | ····· | 13     |        |         | ···· |
| 0.00   | not   | danha | Nigd 1 | In lan | 0 1     | data |

(ii) Describe one way of ensuring the security of the data against malicious damage. Using passwords

|  | .[1 | 1 |
|--|-----|---|
|  |     |   |

### Examiner comment - middle

In part (a) the candidate has identified five different devices and has differentiated between the different types of printer. However, there has been confusion between the use of the inkjet and laser printer so there are three correct answers.

In part (b) (i) the candidate has correctly identified and described disk-mirroring as a method of preventing accidental loss of data, and is awarded one mark for the first answer. The candidate should be aware that the statement *have backup hard drives* is not precise enough to be awarded a mark. There needs to be an understanding that the backup hard drives need to be used to create frequent backups of the data and the media stored safely. It is no use having a backup hard drive if the data stored on it is out of date and the disk drive is stored in the same place as the original data.

In part (b)(ii) the candidate needs to understand that *using passwords* is not precise enough for a description of a method of preventing malicious damage to data. A more complete answer would describe either using a password on a file such as a document to protect the data stored in the file, or using a password in combination with a username to identify users when logging on.

Marks awarded for part (a) = 3/5Marks awarded for part (b) = (i) 1/2, (ii) 0/1

Total marks awarded = 4 out of 8

Cambridge International AS & A Level Computer Science 9608

### Example candidate response - low

6 (a) Name the most suitable input or output device for each of the following uses.

Give a different device in each case.

| Description of use                                     | Input or output device |  |
|--------------------------------------------------------|------------------------|--|
| input of credit card number into an online form        | Keyboard               |  |
| selection of an option at an airport information kiosk | Mouse                  |  |
| output of a single high-quality photograph             | laser printer          |  |
| output of several hundred high-quality leaflets        | Matter printi-         |  |
| input of a hard copy image into a computer             | Samer                  |  |

- (b) All of the uses in part (a) involve the input or output of data.
  - (i) Describe two methods of preventing accidental loss of data.

|      | 1 Data pacticate contraction design too make                                    |
|------|---------------------------------------------------------------------------------|
| *    | Ensuring the user has necieved to obter.                                        |
|      | 2                                                                               |
| (ii) | Describe one way of ensuring the security of the data against malicious damage. |
|      |                                                                                 |

### Examiner comment - low

In part (a) the candidate has correctly identified two different devices, the keyboard and scanner. The candidate has also differentiated between the different types of printer. However, there has been confusion between the use of the inkjet and laser printer and it is very unlikely that an airport information kiosk would have a mouse for input so there are just two correct answers.

In part (b)(i) the response is not set in the context of data transmission. This candidate needs to understand the difference between accidental loss of data stored in a computer system and loss of data integrity during transmission.

The answer to part (b)(ii) is just about sufficient for the award of a mark for a description of a method of preventing malicious damage to data.

Marks awarded for part (a) = 2/5Marks awarded for part (b) = (i) 0/2, (ii) 1/1

Total marks awarded = 3 out of 8

44 Cambridge International AS & A Level Computer Science 9608

# Question 7

7 A system is monitored using sensors. The sensors output binary values corresponding to physical conditions, as shown in the table:

| Parameter | Description of<br>parameter | Binary<br>value | Description of condition               |
|-----------|-----------------------------|-----------------|----------------------------------------|
| Р         | oil pressure                | 1               | pressure >= 3 bar                      |
|           |                             | 0               | pressure < 3 bar                       |
| т         | temperature                 | 1               | temperature >= 200°C                   |
|           |                             | 0               | temperature < 200°C                    |
| R         | rotation                    | 1               | rotation <= 1000 revs per minute (rpm) |
|           |                             | 0               | rotation > 1000 revs per minute (rpm)  |

The outputs of the sensors form the inputs to a logic circuit. The output from the circuit, X, is 1 if any of the following three conditions occur:

| either | oil pressure >= 3 bar and temperature >= $200^{\circ}$ C |
|--------|----------------------------------------------------------|
| or     | oil pressure < 3 bar and rotation > 1000 rpm             |
| or     | temperature >= 200°C <b>and</b> rotation > 1000 rpm      |

(a) Draw a logic circuit to represent the above system.



# Question 7, continued

(b) Complete the truth table for this system.

|   |   |   | Workspace |   |
|---|---|---|-----------|---|
| Р | Т | R |           | Х |
| 0 | 0 | 0 |           |   |
| 0 | 0 | 1 |           |   |
| 0 | 1 | 0 |           |   |
| 0 | 1 | 1 |           |   |
| 1 | 0 | 0 |           |   |
| 1 | 0 | 1 |           |   |
| 1 | 1 | 0 |           |   |
| 1 | 1 | 1 |           |   |

[4]

### Mark scheme

7 (a) Since it is possible to simplify the original conditions, at least 3 possible answers exist for the logic circuit.



Note: input T has 2 cross overs that should not be connections

Note: it is possible to use a 3-input OR gate rather than the two 2-input OR gates on the top right:



## Mark scheme, continued

Alternative solution 1:



Note: other solutions may be possible depending on how simplification of the original statement is done

[5]

# Mark scheme, continued

|   |   |   | Workspace |   |          |
|---|---|---|-----------|---|----------|
| Р | Т | R |           | X |          |
| 0 | 0 | 0 |           | 1 | }1 mark  |
| 0 | 0 | 1 |           | 0 | Jimark   |
| 0 | 1 | 0 |           | 1 | }1 mark  |
| 0 | 1 | 1 |           | 0 | JTHIAK   |
| 1 | 0 | 0 |           | 0 | La mark  |
| 1 | 0 | 1 |           | 0 | ∫ 1 mark |
| 1 | 1 | 0 |           | 1 | 1        |
| 1 | 1 | 1 |           | 1 | } 1 mark |
|   |   |   |           |   | [4]      |

# Example candidate response - high

The outputs of the sensors form the inputs to a logic circuit. The output from the circuit, X, is 1 if any of the following three conditions occur:

| r<br>r  | oil pressure < 3 bar and rotation > 1000 rpm<br>P O R D<br>temperature >= 200°C and rotation > 1000 rpm |   |
|---------|---------------------------------------------------------------------------------------------------------|---|
| i) Drav | T I R O                                                                                                 |   |
|         | T                                                                                                       |   |
|         | 1 De-                                                                                                   |   |
|         | Es b                                                                                                    | × |
|         | J-D-J                                                                                                   |   |
|         |                                                                                                         |   |

### Example candidate response - high, continued

(b) Complete the truth table for this system.

| р | Гт       | B.       | Workspace | v          |
|---|----------|----------|-----------|------------|
| , | <u> </u> | <u> </u> |           | ^          |
| 0 | . 0      | -0       |           | ł          |
| 0 | 0        | 1        |           | 0          |
| 0 | 1.       | .0       |           | 1.         |
| 0 | .1       | 1        |           | 0          |
| 1 | 0        | 0        |           | D.         |
| 1 | 0        | 1        | ·         | ð          |
| 1 | 1        | 0        |           | 1          |
| 1 | 1        | 1        |           | <u>ا</u> . |

Examiner comment - high

The Boolean expression for the given system is: (P AND T) OR (NOT P AND NOT R) OR (T AND NOT R)

In part (a) this candidate is awarded one mark for the AND gate with inputs P and T. The candidate has realised that the middle bracket, (NOT P AND NOT R), can be replaced by a single NOR gate with inputs P and R and so is awarded one mark for the NOR gate. The final expression, (T AND NOT R) has been incorrectly interpreted using the NAND gate and AND gate together and so no mark is awarded for this. The outputs from the top two gates are correctly input into an OR gate, so a third mark is awarded for this, and so that the candidate is not penalised twice for a single mistake the output from the candidate's (incorrect) third expression is input to another OR gate with the output of the first OR gate so a fourth mark is given here.

In part (b) the candidate has correctly interpreted the information given in the question as can be seen by the values written below the text in the question. The truth table can be completed from the information in the question, without reference to the logic circuit. This candidate has used the information given and has correctly completed each line of the truth table, so all four marks are awarded. It was a common mistake for candidates to use their logic circuit to complete the truth table, and if the circuit was incorrect it meant that the truth table was often also incorrect.

Marks awarded for part (a) = 4/5Marks awarded for part (b) = 4/4Total marks awarded = 8 out of 9

Cambridge International AS & A Level Computer Science 9608

https://xtremepape.rs/

51

[4]

## Example candidate response - middle



[4]

\* • x

### Example candidate response – middle, continued

(b) Complete the truth table for this system.

|     | Р            | Т   | R   | PIT | Workspace<br>T.S | (P.T)+(T.R) | x   |
|-----|--------------|-----|-----|-----|------------------|-------------|-----|
|     | 0            | 0   | 0   | 0   | 0                | 0           | 0   |
| ·   | 0            | 0   | 1   | 0   | 0                | 0           | Ø   |
|     | 0            | . 1 | 0   | 0   | 0                | 0           | 0   |
| [   | 0            | 1   | 1   | 0   | i                | έ١          | ١ 🚑 |
|     | 1            | 0 ′ | 0   | 0   | 0                | Ð           | Ó~  |
|     | 1            | 0   | • 1 | . 0 | . 0              | 0           | Ö   |
| ·   | <b>1</b> * * | 1   | 0   | 1   | 0                | 1           | 01  |
| . [ | .1           | ľ   | 1   | 1   | 1.               | 1           | 1   |

### Examiner comment – middle

In the text above part (a) of the question, the candidate has correctly identified the values of P and T in each case, but has incorrectly identified the value of R.

In part (a) the candidate is awarded one mark for the AND gate with inputs P and T, and one mark for the OR gate with the output of the other gates as input. The second AND gate has been incorrectly identified because of the incorrect identification of the value for R and there is no representation for the third condition. To gain more marks all three conditions need firstly to be correctly represented and then the outputs need to be fed into two OR gates, or one three-input OR gate.

In part (b) it is clear from the headings in the workspace that the candidate has used the same expressions for the truth table and the logic circuit. This means that although the values tabulated are correct for the candidate's expressions only the last two pairs of lines in the truth table are correct for the situation given in the question.

Marks awarded for part (a) = 2/5Marks awarded for part (b) = 2/4

Total marks awarded = 4 out of 9

# Example candidate response - low

The outputs of the sensors form the inputs to a logic circuit. The output from the circuit, X, is 1 if any of the following three conditions occur:

| either | oil pressure >= 3 bar and temperature >= 200°C    |
|--------|---------------------------------------------------|
| or     | oil pressure < 3 bar and rotation > 1000 rpm      |
| or     | temperature >= 200°C and rotation > 1000 rpm      |
| (a) Di | aw a logic circuit to represent the above system. |



### Example candidate response - low, continued

(b) Complete the truth table for this system.

|    |   |    | Workspace |                      |
|----|---|----|-----------|----------------------|
| Р  | Т | R  |           | x                    |
| 0  | 0 | 0  |           | $\Delta$             |
| 0  | 0 | 1  |           | 0                    |
| 0. | 1 | D  |           | $\overline{\Lambda}$ |
| 0  | 1 | 1  |           | 1                    |
| 1  | 0 | 0  |           | Q                    |
| 1  | 0 | 1. |           | 0                    |
| 1  | 1 | 0  |           | 1                    |
| 1  | 1 | 1  |           | 1                    |

[4]

### Examiner comment – low

In part (a) this candidate is awarded no marks, because even though there is an AND gate with inputs P and T the two inputs are combined into a single line before the gate. The OR gate has incorrect inputs and again the three inputs have been combined into a single line before the gate. The NOR gate has just a single input from R. The only gate which should have a single input is a NOT gate, it is a frequent error that candidates combine several inputs into a single line before other gates.

In part (b) the candidate has correctly interpreted most of the information given in the question, and has not relied on the logic circuit, but has also included an output of 1 at X when the temperature  $>=200^{\circ}$ C and the rotation <= 1000 revs per minute (rpm). The second pair of lines is thus incorrect, however the first, third and fourth pairs of lines are correct and are each awarded one mark.

Marks awarded for part (a) = 0/5Marks awarded for part (b) = 3/4

Total marks awarded = 3 out of 9

# **Question 8**

| 8 | (a) | Explain how the width of the data bus and system clock speed affect the performance of a computer system. |
|---|-----|-----------------------------------------------------------------------------------------------------------|
|   |     | Width of the data bus                                                                                     |
|   |     |                                                                                                           |
|   |     |                                                                                                           |
|   |     |                                                                                                           |
|   |     | Clock speed                                                                                               |
|   |     |                                                                                                           |
|   |     |                                                                                                           |
|   |     | [3]                                                                                                       |
|   | (b) | Most computers use Universal Serial Bus (USB) ports to allow the attachment of devices.                   |
|   |     | Describe two benefits of using USB ports.                                                                 |
|   |     | 1                                                                                                         |
|   |     |                                                                                                           |
|   |     | 2                                                                                                         |
|   |     | [2]                                                                                                       |

(c) The table shows six stages in the von Neumann fetch-execute cycle.

Put the stages into the correct sequence by writing the numbers 1 to 6 in the right hand column.

| Description of stage                                                                                                                                 | Sequence<br>number |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| the instruction is copied from the Memory Data Register (MDR) and placed in the Current Instruction Register (CIR)                                   |                    |
| the instruction is executed                                                                                                                          |                    |
| the instruction is decoded                                                                                                                           |                    |
| the address contained in the Program Counter (PC) is copied to the Memory<br>Address Register (MAR)                                                  |                    |
| the value in the Program Counter (PC) is incremented so that it points to the next instruction to be fetched                                         |                    |
| the instruction is copied from the memory location contained in the Memory<br>Address Register (MAR) and is placed in the Memory Data Register (MDR) |                    |

[6]

### Mark scheme

8 (a) maximum of 2 marks for data bus width and maximum of 2 marks for clock speed

#### data bus width

- the width of the data bus determines the number of bits that can be simultaneously transferred
- increasing the width of the data bus increases the number of bits/amount of data that can be moved at one time (or equivalent)
- ...hence improving processing speed as fewer transfers are needed
- By example: e.g. double the width of the data bus moves 2x data per clock pulse

#### clock speed

- determines the number of cycles the CPU can execute per second
- increasing clock speed increases the number of operations/number of fetch-execute cycles that can be carried out per unit of time
- ...however, there is a limit on clock speed because the heat generated by higher clock speeds cannot be removed fast enough [3]

#### (b) Any two from:

- · devices automatically detected and configured when first attached/plug and play
- · it is nearly impossible to wrongly connect a device
- USB has become an industrial standard
- supported by many operating systems
- USB 3.0 allows full duplex data transfer
- later versions are backwards compatible with earlier USB systems
- allows power to be drawn to charge portable devices

[2]

# Mark scheme, continued

| Description of stage                                                                                                                                 | Sequenc<br>number |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| the instruction is copied from the Memory Data Register (MDR) and placed in the Current Instruction Register (CIR)                                   | 3                 |
| the instruction is executed                                                                                                                          | 6                 |
| the instruction is decoded                                                                                                                           | 5                 |
| the address contained in the Program Counter (PC) is copied to the Memory Address Register (MAR)                                                     | 1                 |
| the value in the Program Counter (PC) is incremented so that it points to the next instruction to be fetched                                         | 4                 |
| the instruction is copied from the memory location contained in the Memory<br>Address Register (MAR) and is placed in the Memory Data Register (MDR) | 2                 |

[6]

## Example candidate response - high

- (a) Explain how the width of the data bus and system clock speed affect the performance of a 8 computer system. The righth of the data in detern Width of the data bus .. the data tru can carry number of e greater the rdMn...of the more the data hus can carry. at one time cavey 1 bit each). Clock speed ..... ermines. The num con do wer necond the LU can Heases, mumber of unstructions. process and execute in increase ( so overall 1-1-1a [3] work faster). the CPU (b) Most computers use Universal Serial Bus (USB) ports to allow the attachment of devices. all ON ADV Je. anou Describe two benefits of using USB ports. tex) D.A. 1 ... ..... but of data t very bets I moultaneous Aney 2 ..... ane seria , no mandshalling is required when transmitting data for f ion a compuler. [2] so faster data access.
  - (c) The table shows six stages in the von Neumann fetch-execute cycle.

Put the stages into the correct sequence by writing the numbers 1 to 6 in the right hand column.

| . Description of stage                                                                                                                               | Sequence<br>number |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| the instruction is copied from the Memory Data Register (MDR) and placed in the Current Instruction Register (CIR)                                   | 4                  |
| the instruction is executed                                                                                                                          | 6                  |
| the instruction is decoded                                                                                                                           | 5                  |
| the address contained in the Program Counter (PC) is copied to the Memory Address Register (MAR)                                                     | 1                  |
| the value in the Program Counter (PC) is incremented so that it points to the next instruction to be fetched.                                        | 2                  |
| the instruction is copied from the memory location contained in the Memory<br>Address Register (MAR) and is placed in the Memory Data Register (MDR) | 3                  |

[6]

### Examiner comment - high

In part (a) the candidate has made a correct statement about what is determined by the width of the data bus, the number of bits *simultaneously* carried, and so is awarded one mark. There is also a correct expansion of the initial statement that increasing the width of the data bus means that more data can be carried *at one time*, so a second mark is awarded and the candidate has achieved the maximum number of marks allowed for explaining the effect of changing the width of the data bus.

The candidate has also made a correct statement regarding the clock speed, it determines the number of cycles *per second*, and is awarded a third mark. The candidate has achieved the maximum marks for this part question. Had there been four marks for this part question, the expansion point for clock speed would not have been awarded a mark however, as it is not precise enough as the candidate needs to realise that the number of instructions processed *per second* would increase.

This is an excellent answer to this part question

In part (b) the question asks about USB ports, so candidates needed to realise that it is the benefits of USB ports that are required not of USB devices. Giving the benefits of USB devices was a common mistake. This candidate needs to be aware that these statements are not precise or detailed enough to be accepted as equivalent to those on the mark scheme.

In part (c), in common with the vast majority of candidates, this candidate has correctly identified the sequence of stages of the von Neumann fetch-execute cycle.

Marks awarded in part (a)=3/3Marks awarded in part (b)=0/2Marks awarded in part (c)=6/6Total marks awarded=9 out of 11

### Example candidate response - middle

| 8 | (a) | Explain how the width of the data bus and system clock speed affect the performance of a computer system. |
|---|-----|-----------------------------------------------------------------------------------------------------------|
|   |     | Width of the data bus                                                                                     |
|   |     | 160 it can carry more chara she at one line. This means it can                                            |
|   |     | send more doto - Goster Meaning O Getter - Creecula - cycle coobs                                         |
|   |     | Completed Costor have speeding up hu computer is performance - mones it                                   |
|   |     | Clock speed for which speed is post hum                                                                   |
|   |     | hu doto buo will more forme this also locadiog amarat                                                     |
|   |     | eg littles properted per second hus specifing and bettering her                                           |
|   |     | futermance of the computer system [3]                                                                     |
|   | (b) | Most computers use Universal Serial Bus (USB) ports to allow the attachment of devices.                   |
|   |     | Describe two benefits of using USB ports.<br>ອັງໄດ້ພາກ ພາກ ພັກ ບັນເອັ                                     |
|   |     | 1 GOBATES & postable stash manage devile mus allowing he                                                  |
|   |     | broosfer of data from computer to computer sofely                                                         |
|   |     |                                                                                                           |

2 USB ports now connect never mare him just USBs such hut

Mus Con charge devices no mother the country that the [2]

No image of the answer for part (c) has been included as it is identical to that of the A grade response.

### Examiner comment - middle

In part (a) the candidate has made a correct statement about what is determined by the width of the data bus, the number of bits carried *at one time*, and so is awarded one mark. The expansion statement however needs to be more precise, just 'sending more data faster' is not equivalent to increasing the amount of data that can be moved at one time. The explanation of clock speed also needs to be more precise. Increasing the clock speed does not only affect the operation of the data bus.

In part (b) the candidate's first statement is referring to USB devices, not the benefit of a USB port. This candidate has explained that the USB is a portable device but a common mistake amongst candidates is to refer to a USB device as simply a USB, this is too imprecise to be awarded any marks. The second statement correctly identifies that USB ports can also be used to draw power and charge devices and so is awarded a mark.

In part (c) the candidate has correctly identified the sequence of stages of the von Neumann fetchexecute cycle.

Marks awarded for part (a) = 1/3Marks awarded for part (b) = 1/2Marks awarded for part (c) = 6/6

Total marks awarded = 8 out of 11

### Example candidate response - low

| 8 | (a) | Explain how the width of the data bus and system clock speed affect the performance of a computer system. |
|---|-----|-----------------------------------------------------------------------------------------------------------|
|   |     | Width of the data bus Ip Ne width of the data but                                                         |
|   |     | incuease more data is allow to travel through                                                             |
|   |     | the which dod mens derver will seal increase                                                              |
|   |     | Me rate at data havansse                                                                                  |
|   |     | Clock speed In the clock speed internet                                                                   |
|   |     | non industions per second increases assurelly                                                             |
|   |     | Maeefere Ma Mez connector son da mare Uningé                                                              |
|   |     | al a given time [3]                                                                                       |
|   | (b) | Most computers use Universal Serial Bus (USB) ports to allow the attachment of devices.                   |
|   |     | Describe two benefits of using USB ports.                                                                 |
|   |     | 1 Doug eque Neady every device can connect                                                                |
|   |     | via USB so a big voriety.                                                                                 |
|   |     | 2 Not sasy break willie with the pine in other                                                            |
|   |     | porte e [2]                                                                                               |

No image of the answer for part (c) has been included as it is identical to that of the A grade response.

### Examiner comment - low

In part (a) the candidate's response needs to be more precise for credit at this level. There is a need to identify what is determined by the width of the data bus and the effect of increasing the width.

The candidate has correctly identified that increasing the clock speed increases the number of instructions *per second* that can be executed, and is awarded a mark. The expansion statement however, needs to be more precise, 'more things' is too general.

In part (b) the first statement is not precise enough to be equivalent to industry standard, and the second statement is also not precise enough to be equivalent to almost impossible to connect incorrectly.

In part (c) the candidate has correctly identified the sequence of stages of the von Neumann fetchexecute cycle.

Marks awarded for part (a) = 1/3Marks awarded for part (b) = 0/2Marks awarded for part (c) = 6/6Total marks awarded = 7 out of 11

# **Question 9**

9 A database has been designed to store data about salespersons and the products they have sold.

The following facts help to define the structure of the database:

- each salesperson works in a particular shop
- each salesperson has a unique first name
- each shop has one or more salespersons
- · each product which is sold is manufactured by one company only
- each salesperson can sell any of the products
- the number of products that each salesperson has sold is recorded

The table ShopSales was the first attempt at designing the database.

| FirstName | Shop | ProductName                                                 | NoOfProducts     | Manufacturer            |
|-----------|------|-------------------------------------------------------------|------------------|-------------------------|
| Nick      | тх   | television set<br>refrigerator<br>digital camera            | 3<br>2<br>6      | SKC<br>WP<br>HKC        |
| Sean      | BH   | hair dryer<br>electric shaver                               | 1<br>8           | WG<br>BG                |
| John      | тх   | television set<br>mobile phone<br>digital camera<br>toaster | 2<br>8<br>4<br>3 | SKC<br>ARC<br>HKC<br>GK |

(a) State why the table is not in First Normal Form (1NF).

.....

.....[1]

(b) The database design is changed to:

```
SalesPerson (FirstName, Shop)
```

SalesProducts (FirstName, ProductName, NoOfProducts, Manufacturer)

Using the data given in the first attempt table (ShopSales), show how these data are now stored in the revised table designs.

Table: SalesPerson

| FirstName | Shop |
|-----------|------|
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |
|           |      |

# Question 9, continued

Table: SalesProducts

| FirstName | ProductName | NoOfProducts | Manufacturer |
|-----------|-------------|--------------|--------------|
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |
|           |             |              |              |

[3]

65

# Question 9, continued

| (c) | (i)   | A relationship between the two tables has been implemented.            |
|-----|-------|------------------------------------------------------------------------|
|     |       | Explain how this has been done.                                        |
|     |       |                                                                        |
|     |       |                                                                        |
|     |       |                                                                        |
|     |       |                                                                        |
|     |       | [2]                                                                    |
|     | (ii)  | Explain why the SalesProducts table is not in Third Normal Form (3NF). |
|     |       |                                                                        |
|     |       |                                                                        |
|     |       |                                                                        |
|     |       |                                                                        |
|     | (iii) | Write the table definitions to give the database in 3NF.               |
|     |       |                                                                        |
|     |       |                                                                        |
|     |       |                                                                        |
|     |       | [2]                                                                    |

### Mark scheme

- 9 (a) Any one from:
  - (ShopSales) table has repeated group (of attributes)
  - each sales person has a number of products
  - FirstName, Shop would need to be repeated for each record

[1]

#### (b) One mark for SalesPerson table

table: SalesPerson

| FirstName | Shop |
|-----------|------|
| Nick      | ТХ   |
| Sean      | ВН   |
| John      | ТХ   |

# Mark scheme, continued

table: SalesProducts

| FirstName | ProductName     | NoOfProducts | Manufacturer |
|-----------|-----------------|--------------|--------------|
| Nick      | television set  | 3            | SKC          |
| Nick      | refrigerator    | 2            | WP           |
| Nick      | digital camera  | 6            | НКС          |
| Sean      | hair dryer      | 1            | WG           |
| Sean      | electric shaver | 8            | BG           |
| John      | television set  | 2            | SKC          |
| John      | mobile phone    | 8            | ARC          |
| John      | digital camera  | 4            | НКС          |
| John      | toaster         | 3            | GK           |

(1 mark for FirstName column + 1 mark for remainder of table)

[3]

### Mark scheme, continued

- (c) (i) Any two from:
  - primary key of SalesPerson table is FirstName
  - links to FirstName in SalesProducts table
  - FirstName in SalesProductsS table is foreign key
  - (ii) There is a non-key dependency
    - Manufacturer is dependent on ProductName, (which is not the primary key of the SalesProducts table)
      [2]

[2]

(iii) SalesPerson (<u>FirstName</u>, Shop) -SalesProducts (<u>FirstName</u>, ProductName, NoOfProducts) OR SalesProducts (<u>SalesID</u>, FirstName, ProductName, NoOfProducts)

```
-Product (ProductName, Manufacturer)
```

1 mark for correct attributes in SalesProducts and Product tables and 1 mark for correct identification of both primary keys [2]

## Example candidate response - high

(a) State why the table is not in First Normal Form (1NF).

.

There are repeating groups of data for each first name

and shop [1]

.

Table: SalesPerson

| FirstName | Shop |
|-----------|------|
| NICK      | Ta   |
| ବସେଠ      | 0 H  |
| John      | TX.  |

#### Table: SalesProducts

| ProductName     | NoOfProducts                                                                                                                                              | Manufacturer                                                                                                                                                                                                                                   |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| television art  | 3                                                                                                                                                         | . %*C                                                                                                                                                                                                                                          |
| refrigerator    | 2                                                                                                                                                         | WP                                                                                                                                                                                                                                             |
| digital compra  | 6                                                                                                                                                         | нкс                                                                                                                                                                                                                                            |
| hair dryer      | l                                                                                                                                                         | WG                                                                                                                                                                                                                                             |
| electric shquer | ଟ                                                                                                                                                         | ÐE                                                                                                                                                                                                                                             |
| teleurs ion set | 2                                                                                                                                                         | 8 <b>K</b> C                                                                                                                                                                                                                                   |
| mobile phone    | Ś                                                                                                                                                         | ARC                                                                                                                                                                                                                                            |
| digital camera. | 4                                                                                                                                                         | HKC                                                                                                                                                                                                                                            |
| toqsicr         | 3                                                                                                                                                         | 0 K                                                                                                                                                                                                                                            |
|                 | ProductName<br>lelevision set<br>nefrigerQitOr<br>digitOr compro<br>hair dryer<br>electric shquer<br>lelevision set<br>digital camera.<br>digital camera. | ProductName     NoOfProducts       television set     3       refrigeration     2       digital camera     6       hair dryer     1       electric shquer     8       television set     2       mobile phone     8       digital camera     4 |

r

(c) (i) A relationship between the two tables has been implemented.

Explain how this has been done.



## Examiner comment - high

In part (a) many candidates were able to describe why the table was not in First Normal Form in terms of the data given, although very few used the correct terminology.

This candidate has fortunately crossed out the word 'for' and has thus correctly identified the repeating data and has been awarded the mark

In part (b) the vast majority of candidates correctly completed the two tables and were awarded all three marks. A very few candidates left blanks in the FirstName column of the SalesProducts table and so were awarded only the one mark for the SalesPerson table.

In part (c)(i) the candidate has correctly identified the attribute forming the link between the tables, (FirstName) and is awarded one mark. This attribute has also correctly been identified as the primary key in the SalesPerson table and the foreign key in the SalesProducts table and so is awarded a second mark.

The candidate has correctly described a non-key dependency in part (c)(ii) and is awarded one mark. The candidate has then also identified that non-key dependence and is awarded the second mark. The response would have been improved if the non-key dependence had been identified as Manufacturer dependent on ProductName, rather than *the product*.

In part (c)(iii) the two table definitions have been written according to convention and each table has the correct attributes so the first mark is awarded. The primary keys of each table have also been correctly identified so the second mark is awarded. This answer would have been more complete if the SalesPerson table had also been included in the answer showing the complete database in 3NF.

Marks awarded for part (a) = 1/1Marks awarded for part (b) = 3/3Marks awarded for part (c) = (i) 2/2, (ii) 2/2, (iii) 2/2

Total marks awarded = 10 out of 10

## Example candidate response - middle

(a) State why the table is **not** in First Normal Form (1NF).

There are no simple nows to pro- the product nume lines .....[1]

No image of the answer for part (b) has been included as it is identical to that of the A grade response.

(c) (i) A relationship between the two tables has been implemented.

Explain how this has been done. my a phimumy Key, which is a field which contains que duter or a composite key and a fareian tuble belove there is a velopianship between ly the Drimmery Key the Sule Person (First Ward) Troduct (Tirst Names [2] Explain why the SalesProducts table is not in Third Normal Form (3NF). (ii) hormal form is the Second MOWent on the philmany \_\_\_\_\_ Write the table definitions to give the database in 3NF. (iii) Product Illume , IVd Hoducts ) Traduct Warne Mum facturer ) [2]
## Examiner comment - middle

In part (a) this candidate has not correctly identified the repeating data, and has not described in sufficient detail what is meant by a repeated group of attributes, so no mark is awarded.

In part (b) the candidate has correctly completed both tables and is awarded all three marks.

In part (c)(i) the candidate has correctly identified the attribute forming the link between the tables, (FirstName) and is awarded one mark. This attribute has also correctly been identified as the primary key in the SalesPerson table and the foreign key in the SalesProducts table and so is awarded a second mark.

The response to part (c)(ii) is confused. The answer would be improved by changing *dependent to not dependent*, however there would still need to be some identification of the attributes in order for both marks to be given.

In part (c)(iii) all three table definitions have been written according to convention showing the complete database in 3NF. The candidate has correctly identified the attributes in the SalesProducts and Product tables and is awarded one mark. The primary keys of both tables have also been correctly identified, so the second mark is also awarded. This is an excellent answer to this part of the question.

Marks awarded for part (a) = 0/1Marks awarded for part (b) = 3/3Marks awarded for part (c) = (i) 2/2, (ii) 0/2, (iii) 2/2

Total marks awarded = 7 out of 10

## Example candidate response - pass

(a) State why the table is not in First Normal Form (INF). It is not in First Normal Form be cause it has no repeated group of attributes [1]

Table: SalesPerson

| FirstName | Shop . |  |
|-----------|--------|--|
| Nich      | Tx     |  |
| BA Secin  | BH .   |  |
| John      | TX     |  |

82

| FirstName      | ProductName                                      | NoOfProducts | Manufacturer         |
|----------------|--------------------------------------------------|--------------|----------------------|
| Nick           | television set<br>se foigeratos<br>divida camara | ي.<br>م      | SKC<br>MP<br>HEC     |
| Sean           | bain degree electric shered                      | 8.           | ्रह्म                |
| John           | television set<br>hudoite phone<br>divid carees  | 2 2 A        | Skc.<br>Akc.<br>Hkc. |
|                | toaster                                          |              |                      |
| vieni menera i |                                                  |              |                      |
|                |                                                  |              |                      |
|                | <u>k</u>                                         | •            |                      |
|                |                                                  |              |                      |
|                |                                                  |              |                      |
|                |                                                  |              | *                    |
|                |                                                  |              |                      |
|                |                                                  |              |                      |
| я              | 87<br>64                                         | 52 E3        |                      |

74

(c) (i) A relationship between the two tables has been implemented.

Explain how this has been done. table vas  $\mathbf{D}$ MA pen in on G 101 3 ゎ NEED many monu from both ano Many es bridge en 1 by lesFroduc is not in Third Normal Form (3NF). (ii) Explain why applie tey CULC deser 1 2/1.1 an key. onone ande 2 O 3 *mℓ*......[2] (iii) Write the table definitions to give the database in 3NF. Sales Person (First Name, Shop) Sales Praducts (Erst Name, Product Name, No Of Praducts Manufacturer Desails ( Tachact Mame, Magalactu ..... Manufacturer Details (Manufacturer, Product Name) [2] . 21

## Examiner comment - pass

In part (a) the candidate has stated that there is no repeated group of attributes. The terminology has been used correctly, but the answer is the opposite of the correct one so no mark was awarded.

In part (b) the candidate has correctly completed the SalesPerson table and so is awarded the mark. For the SalesProducts table however, the candidate has copied the table given in the stem of the question into the first three rows of the answer space and has not implemented the revised design given in the rubric for this part of the question. No marks were awarded for this table as neither the FirstName column nor the remainder of the table was correct.

In part (c)(i) the candidate has correctly stated that the primary key in one table has been used as a foreign key in the other to form a link between the tables, so is awarded one mark. There is a need though, to identify at least one of the keys in order to gain the second mark.

The candidate has correctly identified that there is a non-key dependency in part (c)(ii) and is awarded one mark. The identification of the non-key dependency needs to be correct if the second mark is to be awarded. In this case that is not so.

In part (c)(iii) the table definitions have been written according to convention and each table has the correct attributes so the first mark is awarded. A primary key has been identified for each table, but that shown for the ManufacturerDetails table is incorrect so the second mark has not been awarded.

Marks awarded for part (a) = 0/1Marks awarded for part (b) = 1/3Marks awarded for part (c) = (i) 1/2 (ii) 1/2 (iii) 1/2

Total marks awarded = 4 out of 10

Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom tel: +44 1223 553554 fax: +44 1223 553558 email: info@cie.org.uk www.cie.org.uk

